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Abstract: - The power unit is the fundamental element of hydraulic excavators. Its actual technological 
evolution derives in a design complexity that makes it difficult either for mining constructors or engineers to 
predict accurately its failure. For this reason, the main objective of this work is to provide a suitable decision 
model to obtain the probability distribution that better reflects the fault occurrence on the power unit for mining 
excavators from a work management perspective. The proposed method relies on the probabilities for each fault 
typology in the power unit estimated from data of faults collected in different mining excavators throughout its 
operation life. An optimum maintenance strategy is modelled through an influence diagram in terms of repair 
costs and production losses, representing the direct and indirect costs engineers have to face when a machine 
breaks down. An interesting result is the identification of the probabilistic model that best reflects the 
estimation of prior fault probabilities of the power unit elements. Surprisingly, indirect costs due to lack of 
production are found to be about 4.5 times bigger than direct costs, reflecting the necessity for a maintenance 
strategy capable to reduce faults in the early stages avoiding costs to become expansive over time. The 
application of this decision model helps to minimize production losses at the same time engineers gain 
knowledge about the risk attitudes that boost an efficient management of uncertainties involved with the 
severity and time of appearance of certain types of faults. 
 
 
Key-Words: - Decision making, hydraulic excavator, maintenance, systems reliability, mining engineering, risk 
tolerance, power unit. 
 
1 Introduction 
Excavators (Hydraulic Excavators) are heavy 
construction equipment decisive for earthmoving 
operations both in mining and civil works. They are 
most commonly used for digging rocks and soil, but 
with its many recent attachments can also be used 
for cutting steel, breaking concrete, drilling holes in 
the earth or laying gravel onto the road prior to 
paving [1]. 

Power in an automobile is normally received 
straight from the engine but in a hydraulic 
excavators this is different. Because the machine 
uses a lot of force, the power unit is able to move by 
changing the energy it receives from the engine into 
hydraulic power [2]. The engine consists of three 
parts. The engine block, the engine head and the 
lower engine. Each part is constituted respectively 
for a large number of components which are 
assembled in order to obtain the intended part. 

When talking about failures, from the set of faults 
that can be recorded during the machine´s service 
life, according to their prevalence, those that can be 
associated with the power unit can be classified as: 
direct engine faults, injection system faults and 
starter engine faults. 

During the past 20 years there has been a 
heightened improvement in the manufacture of 
heavy machinery engines [3]. They are more 
powerful and fuel efficient with a minimized impact 
of emissions. The reliability has also been 
significantly enhanced with the inclusion of 
sophisticated electronic settings able to detect and 
predict nearby faults, but with a high price. 
Commonality and simplicity of design has turned 
now into complex structures with multiple sensors 
and an increased number of components. On many 
occasions, when faults occur time to repair takes a 
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considerable time due to disassembly process which 
has to be carried out by qualified technical staff.  

However, from a management perspective when 
a fault occurs the problem for engineers is not so 
much which component has failed, rather than how 
long is going to be the machine stopped or how 
much is the reparation cost. This situation, creates 
the necessity to define maintenance strategies 
oriented toward a wider scale represented by the set 
of power unit elements failure instead of power unit 
components failure. This new approach provides a 
great simplification of the domain problem, 
although a commonly held view is that the decision-
model results and conclusions are only as good as 
the distributions that go into it.  

To summarize the foregoing discussion, 
inaccurate questions always tend to ask which is the 
correct distribution to use for a specific topic. The 
motivation behind this work comes from trying to 
figure out whether different distributions change in 
a considerably way our maintenance decisions. 
Moreover, a range of possible attitudes can be 
adopted towards the same risk situation, resulting in 
different maintenance behaviours, which lead to 
production consequences. In this context, this paper 
evaluates exponential and Weibull distributions due 
to its extensive use in data analysis and reliability 
engineering [4]. The exponential distribution excels 
by its simplicity in calculation, but might not be 
appropriate to model the overall lifetime power unit 
elements, because the failure rates are not constant, 
and a constant failure rate approximation could not 
be representative enough. Alternatively, an 
important aspect of the Weibull distribution is how 
the values of the shape parameter 𝑘𝑘 and the scale 
parameter 𝜆𝜆 affect the probability density function 
(PDF) and how they properly represent the power 
unit reliability [5]. For this latter issue, an accurate 
estimation of Weibull parameters is needed in order 
to obtain a reliable analysis of the occurrence of 
faults in the power unit.  

The rest of the paper is structured in the 
following way. Section 2 presents the mathematical 
methods used to determine Weibull parameters and 
obtain the cumulative distribution function (CDF), 
both for Weibull and exponential distribution. 
Section 3 explains the influence diagram design for 
maintenance assessment in hydraulic excavators. 
Section 4 shows the decision model results and 
discusses the findings obtained about how these 
distributions may influence maintenance decisions 
and attitude towards risk. Section 5 concludes the 
paper and provides future work addressing the 
urgency of developing new models and systems that 
improve heavy machinery performance. 

 
 

2 Problem formulation 
The Weibull distribution is an appropriate 
probability distribution for modelling survival 
analysis and has been widely used in reliability 
engineering and failure analysis due to its 
versatility. The density function of a Weibull 
distribution is given by the following expression:  
 

    𝑓𝑓(𝑥𝑥𝑖𝑖|𝜃𝜃) = 𝑘𝑘
𝜆𝜆
�𝑥𝑥
𝑘𝑘
�
𝑘𝑘−1

𝑒𝑒−(𝑥𝑥/𝜆𝜆)𝑘𝑘 , 𝑥𝑥 ≥ 0,       (1) 
 

where 𝜃𝜃 = (𝑘𝑘, 𝜆𝜆)𝑡𝑡 , 𝑘𝑘 > 0 is the shape parameter, 
𝜆𝜆 > 0 the scale parameter and t denotes transposed. 
On the other hand, the exponential distribution is a 
particular case with 𝑘𝑘 = 1 indicating a constant 
failure rate 𝜂𝜂 > 0 over time and, therefore, that 
random external events are causing the components 
failure. 
 
2.1 Estimation methods 
In order to select the probabilistic model that best 
reflects this new approach to determine the fault of 
the power unit in mining excavators, several 
methods have been implemented for the estimation 
of the parameter 𝜃𝜃. Given a sample 
{𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} of size n drawn from a random 
variable X, the following estimation methods can be 
defined: 

Method 1. Maximum likelihood estimation. Under 
i.i.d. assumption, 𝜃𝜃 is estimated by maximizing the 
likelihood function defined as: 

  𝐿𝐿(𝜃𝜃) = �𝑓𝑓(𝑥𝑥𝑖𝑖|𝜃𝜃).
𝑛𝑛

𝑖𝑖=1

        (2) 

Method 2. Moment matching estimation. This 
technique is based on matching the sample moments 
with the corresponding distribution moments: 

𝐸𝐸(𝑋𝑋𝑟𝑟) =
1
𝑛𝑛
�𝑥𝑥𝑖𝑖𝑟𝑟
𝑛𝑛

𝑖𝑖=1

, 𝑟𝑟 = 1,2.         (3) 

Method 3. Quantile matching estimation. Based on 
matching the sample moments with the 
corresponding distribution moments: 

𝐹𝐹−1(𝑝𝑝𝑟𝑟 |𝜃𝜃) = 𝑄𝑄𝑛𝑛 ,𝑝𝑝𝑟𝑟 , 0 < 𝑝𝑝𝑟𝑟 < 1.         (4) 

Method 4. Maximum goodness-of-fit estimation 
with the Cramer-von Mises goodness-of-fit distance. 
Assuming that an ordered sample, 𝑥𝑥1 ≤ 𝑥𝑥2 ≤ ⋯ ≤
𝑥𝑥𝑛𝑛 , 𝜃𝜃 is estimated by minimizing: 
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       (5) 

Method 5. Maximum goodness-of-fit estimation 
with the Kolmogorov-Smirnov goodness-of-fit 
distance. Assuming that an ordered sample,           
𝑥𝑥1 ≤ 𝑥𝑥2 ≤ ⋯ ≤ 𝑥𝑥𝑛𝑛 , 𝜃𝜃 is estimated by minimizing: 
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𝑖𝑖 − 1
𝑛𝑛

��        (6) 

 
2.2 Goodness of fit statistics 
The goodness of fit of a statistical model describes 
how well it fits a set of observations. Different 
goodness of fit statistics were calculated to measure 
the distance between the adjusted parametric 
distribution and the empirical distribution. Firstly, 
three goodness of fit statistics which are classically 
considered when fitting continuous distributions: 
Cramer-von Mises, based on (5), Kolmogorov-
Smirnov, whose distance was given in (6), and 
Anderson-Darling with the following goodness of fit 
distance, assuming an ordered sample: 
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                                                                                (7) 
 
Secondly, the loglikehood criteria such as the 
Akaike information criterion or the Bayesian 
information criterion are often appropriate to avoid 
overfitting when small samples are available: 

  𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑟𝑟 − 2𝑙𝑙𝑛𝑛�𝐿𝐿�𝜃𝜃���,           (8) 

𝐵𝐵𝐴𝐴𝐴𝐴 = 𝑙𝑙𝑛𝑛(𝑛𝑛)𝑟𝑟 − 2𝑙𝑙𝑛𝑛�𝐿𝐿�𝜃𝜃���,          (9)  

with r=2, number of estimated parameters. 

Finally, root mean square error: 
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and Chi-squared distance: 
 

𝜒𝜒2 =
∑ �𝑓𝑓�𝑥𝑥𝑖𝑖|𝜃𝜃�� −

1
𝑛𝑛
�
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𝑛𝑛 − 𝑟𝑟
           (11) 

 
were also calculated. 

 
 
2.3 Estimated parameters and selected 
probability distributions 
All calculations were obtained using the open 
source programming language R [6]. The results 
obtained with the different goodness of fit statistics 
allowed to identify Method 5 for the engine, Method 
1 for the starter engine and Method 3 for the 
injection system as the best estimation methods for 
the obtainment of Weibull parameters. The values of 
the parameters required for the representation of the 
cumulative distribution function for each power unit 
element with the winning methods are shown in 
Table 1. 

Note that the cumulative distribution function for 
the Weibull distribution is: 

 

𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−�
𝑥𝑥
𝜆𝜆�
𝑘𝑘

,𝑥𝑥 ≥ 0,           (12) 

whose representation requires the estimation of the 
scale 𝜆𝜆 and shape 𝜅𝜅 parameters. Whereas, the 
exponential distribution only needs the failure rate 
𝜂𝜂, being its cumulative distribution function: 

𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−η𝑥𝑥 ,𝑥𝑥 ≥ 0.        (13) 
 
In Table 1 is shown the constant failure rate for each 
power unit element made as an approximation of the 
average of faults in the machine’s operating life. It 
is interesting to analyse the payoff between its 
simplicity of calculation and the magnitude of the 
difference in the results, Figure 1, especially when 
they are transferred to an influence diagram 
affecting strategic decisions. 

Table 1: Parameters values for Weibull and 
exponential distributions representation 

Weibull Distribution 
 Shape (𝜅𝜅) Scale (λ) 
Engine 0.91290 1222.22 
Starter Engine 1.44447 3244.58 
Injection System 1.94212 3658.132 

Exponential Distribution 
 Failure Rate (η) 
Engine 0.00027586 
Starter Engine 0.00015517 
Injection System 0.00012069 

 
In view of Figure 1, it can be seen how the Weibull 
distribution gives higher probabilities to the failure 
of the units during the first years of tis operating 
time. From the middle operating time of the 
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machine the probabilities show more similar results 
being the difference less noticeable. 

 
Fig.1: Cumulative distributions functions 
comparison for the power unit elements. 

 

3 Influence diagram for maintenance 
strategy evaluation 
The maintenance strategy is modelled through an 
influence diagram (ID). An ID is a directed acyclic 
graph representing a generalization of a Bayesian 
network, in which probabilistic inference can be 
applied to solve decision making problems [7]. IDs 
are directly applicable in team decision analysis 
since it allows sharing of information among team 
members to be modelled and solved explicitly. 
Several extensions of IDs find their use in game 
theory as an alternative representation of decision 
trees.  
 
3.1 Semantics and design 
In this case, the ID was created using the decision 
modelling software BayesFusion, LLC [8]. The 
problem design depicted in Figure 2 involves 4 
variable types for notation: 
 

• 2 decision nodes (green rectangles). The 
excavator operating time is evaluated in hours. 
Every operation year the excavator works 4,800 
hours, considering a service life at full 
performance up to 16,800 hours. The 
maintenance strategy node offers the possibility 
to assess the maintenance strategy according to 
the fault probabilities for each element of the 
power unit obtained with exponential and 
Weibull distributions (Figure 2). 
 

• 3 chance nodes (yellow circles). The engine 
itself, the starter engine and the injection system. 
They are quantified by the probabilities (Figure 

1) which integrate the uncertainty associated to 
the failure of the power unit. 

 
• 1 deterministic node (red double circle). It 

represents the fault severity of the power unit. 
Once all their parents are known, there is no 
uncertainty about the outcome. The 
quantification is similar to chance nodes [9]. The 
only difference now is that when a fault event 
takes place, the outcome is known with certainty. 
The definition is done with a probability table 
(Table 2) that contains the fault severity 
depending on the combination of fault elements 
in the power unit, according to the criteria of 
mining engineers consulted. 

Table 2: Deterministic node definition. Fault 
occurrences (✓) determining power unit fault 

severity (very high, high, medium or low). 
 

 
 
 
 
 
 

Engine Starter 
Engine 

Injection 
System 

 

Very 
High 

✓ ✓ ✓ 
✓  ✓ 

 
High 

✓ ✓  
✓   
 ✓ ✓ 

 

Moderate   ✓ 
 

Low  ✓  
 

• 8 value nodes (blue and red hexagons).  Blue 
hexagons represent the direct cost (DC) and red 
hexagons the indirect cost (IC) for each power 
unit element fault. DCs refer to the economic 
cost of fault repair. On the other hand, ICs imply 
a broader concept. They compute the economic 
cost associated with the loss of production due to 
the failure of the machine. The loss of production 
depends on the repair time, which is in turn 
dependent on the severity of the fault. For this 
reason, the utility costs for every element fault 
are computed independently. This approach 
allows to figure out which element is causing the 
highest lost. However, for a generalized analysis 
it is usually easier for the decision maker to 
combine them in a single multi-attribute utility 
function (MAU) [10]. Thus, the influence 
diagram has two final MAUs, the Power Unit 
DC and the Power Unit IC, summarizing the 
direct and indirect costs expected for the power 
unit elements failure over time. In this way, any 
strategy change on the decision nodes will be 
directly computed giving rise to a final result 
represented by the MAUs.  
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3.2 Relation with the expected utility theory  

In accordance with the expected value criterion, 
which takes into account only the sizes of the 
payouts and the probabilities of occurrence, the goal 
of an influence diagram is to highlight a decision 
alternative that has the highest expected gain or 
utility [5]. Utility is, however, by assumption 
subjective. In this particular case, the influence 
diagram enables engineers and decision makers 
assess the expected costs of suffering a failure over 
time. This approach means that direct and indirect 
costs need now to be minimized knowing that the 
maintenance and failure duo has not a meaningful 
zero point because maintenance has always an 
associated cost and it is very rare the case, not to say 
impossible, that an excavator has no faults during its 
operating time, no matter how good the maintenance 
could be.  

Various decision makers facing the same 
problem and even sharing the same set of beliefs 
may choose differently because of their preference 
structure and different utility functions, although 
they are under the same uncertain situation. This can 
be especially noticed in a field such as engineering. 
A human decision maker does not always choose 
the option with the higher expected value. 
According to the expected value theory engineers 
here should choose the strategy that minimizes the 
faults occurrence although the maintenance cost is 
higher.  

However, as stressed by expected utility theory, 
some engineers will adopt risk-averse decisions, 
even though the expected value is lower. Others will 
make risk-seeking decisions, identifying fewer 
threats and looking for a bigger reward. Sometimes  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the best solution lies somewhere in between. A risk 
neutral attitude are neither risk-averse nor risk-
seeking, but rather seek strategies and tactics that 
have the highest future pay-offs, focusing on the 
longer term and only taking action when it is likely 
to lead to significant benefit. 

 
 
 
 
 
 
 
 
 
 

4 Decision model results 
The results obtained offer two principal 
contributions. Firstly, how the estimations of prior 
probabilities can affect decision making for 
maintenance policy in this new approach based on 
the power unit segmentation into three main failure 
elements. Secondly, how the risk for fault severity 
changes depending on the model selected. 
 
4.1 Distribution influence on decision 
making 
The expected direct and indirect costs associated 
with the failure of the power unit modelled either 
with exponential or Weibull distribution show a 
significant growth in the first two years (see Figure 
3 and 4). After the second year, when the machine 
has been operating more than 9600 hours, the 
expected costs present a certain stabilization.   

Comparing the results obtained with each model, 
a big difference lies within the first 3 years. The 
influence diagram when is modelled with 
exponential distribution gives rise to lower direct 
and indirect costs for that period. These differences 
reduce over time, from 48% less for the first year to 
20% less the second and just 10% less the third. 
This highlights that even if both models present a 
good similarity from the third year onwards, 

Fig.2: Influence diagram (ID) for power unit maintenance evaluation of hydraulic excavators  



Weibull distribution, more accurate mathematically, 
can better respond to the expected costs during the 
initial stages. Therefore, even though for some real 
life scenarios a constant failure rate can represent a 
good approximation, a Weibull distribution has 
proven to be a worthwhile distribution for modelling 
power unit faults, although the estimations of its 
parameters may be more time-consuming in terms 
of calculation. 
 

 
 
 
 

Fig.3: Direct and indirect expected fault costs for 
the exponential probabilistic model 

This last point is also supported by the fact that 
Weibull distribution enables a better understading of 
power unit elements. The shape parameter 𝜅𝜅 
represents the failure rate behaviour. A value of 
𝜅𝜅 < 1 indicates that the failure rate decreases over 
time. This is the case of the engine 𝜅𝜅 = 0.91290  
(Table 1). When    𝜅𝜅 > 1 the failure rate increases 
with the passing of time. The starter engine 𝜅𝜅 =
1.44447 and the injection sysmtem 𝜅𝜅 =  1.94212 
(Table 1) present this condition reflecting the 
existence of an aging process. It is noticeable that 
the engine itself is the one with the most similar 
behaviour to an exponential distribution (𝜅𝜅 = 1), 
while the injection system gets closer to a Rayleigh 
distribution (𝜅𝜅 = 2) with the starter engine in the 
middle of these two. 
 

 
 
 

Fig.4: Direct and indirect expected fault cost for the 
Weibull probabilistic model 

 

When designing an optimum maintenance policy 
this knowledge is crucial.  The engine is known now 
as more sensitive to suffer initial faults, while the 
starter engine and the injection system present the 
inverse condition. A right balance could be found 
with an extensive maintenance that pays special 
attention to the machine in its initial stage moving 
toward a less exhaustive maintenance when the 
machine have reached its half-life. This could 
ensure a good adaptation of the engine to the work 
environment whilst promoting a healthy aging for 
the starter engine and the injection system.  

From a management perspective this can be 
understood knowing that a fault minimization at the 
beginning of the excavator operating life not only 
involves a reduction in direct costs associated with 
repair, but also would contribute to quickly reach 
the required hours to complete the amortization of 
the machine without suffering faults. 

Undoubtedly, a surprising result is he one related 
to the indirect costs. Indirect costs show up in a ratio 
of 4.5 to 1 compared with direct costs. They are 
larger from what many engineers can imagine, often 
hidden behind the shadow of the faults having a 
huge role system performance. A reasonable 
explanation for the big magnitude of indirect costs 
can be found in the fact that when an excavator 
breaks down the operative process has to stop. The 
lack of an operative excavator prevents the 
operation of the rest of the fleet, including 
successively the dumper trucks, bulldozers, road 
rollers and other machinery (Figure 5). For this 
reason, the failure of hydraulic excavators can 
represent expansive losses in terms of production 
for the operative process. This situation can be even 
more dramatic if the works are being executed by 
only one fleet, where only one excavator is present. 
Many construction works cannot afford in their 
budgets the simultaneously work of two excavators, 
becoming maintenance the key tenet for the project 
success. 
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Fig.5: Iceberg graph showing the proportion 
between direct and indirect costs in a fleet led by a 

hydraulic excavator. 
 
 
 
 
4.2 Fault severity 
Aleatory or stochastic uncertainty due to the faults 
randomness is always at some point inherent to the 
variability of the system regardless of how good the 
maintenance strategy is. However, epistemic or 
subjective uncertainty arising from the lack of 
knowledge about the system and its behaviour can 
be certainly reduced by acquiring knowledge 
through probability and decision models like the one 
shown here. One aspect that holds special 
importance is the risk of suffering a fault with a high 
degree of severity, because of its huge cost and long 
time to repair. 

The deterministic node incorporated in the 
influence diagram (Figure 2) with engineers´ criteria 
for the fault degree of severity regarding the 
particular damaged elements in the power unit 
(Table 2) makes it possible to calculate the risk 
profile for the machine operating time (Figure 6). 
The risk profile is important for identifying the 
acceptable level of risk an individual or corporation 
is able to accept. It is expressed in terms of risk 
probability including the results of using in the 
influence diagram the prior probabilities for both the 
exponential and Weibull model. 
 

 
 
 
 

Fig.6: Probability risk profile for the power unit 
fault severity 

As it can be seen in Figure 5, from year 2 the 
likelihood of having a fault with a very high severity 
exceeds the 50%. Year 2 can, therefore, set the point 
for which the risk level determines the maintenance 
strategy. During the two first years could be 
implemented an extensive maintenance based on a 
predictive approach that tries to minimize fault risk 
levels for the later years. From the third year a 

preventive maintenance, less exhaustive, can be 
applied. The aging effect is already present and 
expensive maintenance approaches could not really 
stop faults appearance. 

This maintenance approach for the hydraulic 
excavator combines two risk attitudes. First, during 
the two first years a risk-avoiding attitude toward 
faults is developed. The predictive maintenance 
applied is based on high quality with a high cost 
associated, which is expected to be less than the 
faults that may occur throughout the life of the 
machine if it was not applied. Second, from the third 
year a risk-seeking attitude toward risk is taken. 
Only the preventive maintenance is going to be 
undertaken. Faults inevitably are going to happen, 
so an exhaustive maintenance is not going to 
suppose too much in relation the fault cost. 

To sum up, this approach as a whole tries to 
constitute a risk-neutral attitude focusing on the 
successful operation of the machine in the long term 
taking those actions that are more likely to lead to 
significant benefit. 
 
 
5 Conclusions 
In this article, a new process for the estimation of 
the power unit failure in mining excavators was 
developed using an innovative management 
perspective. The power unit was divided in three 
main fault elements and from data of faults collected 
the last years in different mining excavators 
throughout its operation life, exponential and 
Weibull probabilistic models were used in order to 
obtain the prior fault probabilities for each element. 
The analysis of the prior probabilities into an 
influence diagram showed that the Weibull model 
offers a more accurate representation of the 
expected direct and indirect costs for the power unit. 

A risk profile for the faults severity was 
calculated proposing an optimized maintenance 
solution for this machinery. Maintenance strategies 
should be designed under the assumption of a 
certain probability model that does not influence 
decisions. Since the selection of the probability 
model is carried out at an early stage of the design, 
one might expect a low impact on the final selection 
of the best strategy. This paper shows how a 
misspecification of the probability model can lead to 
erroneous conclusions since early stages causing 
expansive economic losses. Different alternatives 
based on several risk attitudes toward uncertainty 
can be adopted, where not the one with the highest 
expected gain can necessarily be the best. 

Finally, future work is required to analyse and 
optimize maintenance strategies in other crucial 
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parts of excavators and other mining and civil 
machinery, especially those exposed to a high level 
of wear. 
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